Espacio Euclideano R3: Sistema de coordenadas tridimensional: x, y, z
Podemos definir una superficie como una ecuación: F(x,y,z)=0
por ejemplo x^2 + y^2 + z^2 -4 = 0
SURFER muestra las superficies en una zona esférica
Lo que sobresale de la esfera se «recorta»
Probar:
x^2+y^2+z^2+1500*(x^2+y^2)*(x^2+z^2)*(y^2+z^2)-1
Cambiar un + por –
x^2+y^2+z^2+1500*(x^2+y^2)*(x^2-z^2)*(y^2+z^2)-1
Alejandro Bia
Arte, Mates e Informática
3
Superficies en el Espacio
NameSurfer
Nombres o palabras que producen curvas bonitas
Alejandro Alicante Anacleto Antonio Armando Australopitecus Cervantes Dymitri Ester Etelvina Feliciano Felipe Ildefonso Lucía
Maricarmen Naranja Paco Patata Pedro Pepe Peter Piojo Sebastián Tabarca Valencia Xavier
Algunas imágenes
Alejandro Bia
Arte, Mates e Informática
4
Superficies en el Espacio
SURFER
PLANOS:
Un plano x=0
x
Dos planos x=0 e y=0
x*y
Tres planos
x*y*z
CILINDRO:
Cilindro en sentido de la z
(x^2+y^2-1)
Dos cilindros cruzados
(x^2+y^2-1)*(x^2+z^2-1)
Con un exponente impar
(x^2+y^2-1)*(x^2+y^3-4)
cambiar la primera x por z
cambiar la primera y por z
Tres cilindros: x, y, z
(x^2+y^2-1)*(x^2+z^2-1)*(y^2+z^2-1)
Tres caños cuadrados
(x^6+y^6-1)*(x^6+z^6-1)*(z^6+y^6-1)
PARÁBOLA:
x + y + z^2
ESFERA:
Esfera
Cuando el centro es el origen de coordenadas la ecuación que deben satisfacer los puntos P(x,y,z) para pertenecer a
la esfera es: x^2 + y^2 + z^2 = r^2
por ejemplo
x^2 + y^2 + z^2 -4
¿Cómo dibujarías un planeta con anillo como Saturmo?
Chmutov’s octic equation written by SV Chmutov in the early 80s. At the time, it constituted the world record for μ(d) most
d. Beginning numbers have been replaced by some of the Fibonacci numbers sequence. Full description of the process is available
on the following page http://www.hermay.org/jconstant/surfer/resource.html
04. Chmutov Octic. Equation written by SV Chmutov in the early 80s. At the time it constituted the world record for μ(d)
most d. Beginning numbers have been replaced by some of the Fibonacci numbers sequence.
05 Chmutov octic #2 on a vis a vis background disk. The cusp on the surface is a singularity. Black holes and the Big Bang
constitute singularities cosmological model equations. The original equation has been altered with reverse Fibonacci numbers
sequence.
A classical question in algebraic geometry is how many cone-singularities a surface of a given degree can have. In 1940 Togliatti
proved that for degree 5 surfaces 31 cone-singularities are possible. It took 40 years until Beauville could prove that this
is indeed the maximal number. The movie shows a quintic with 31 cone-singularities.
Worldrecordsurfaces – Algebraic surfaces with many singularities (PDF)
Alejandro Bia
Arte, Mates e Informática
6
Superficies en el Espacio
Touchviewer-1.1
opc 1
opc 2
Alejandro Bia
Arte, Mates e Informática
7
Superficies en el Espacio
3D-XplorMath-J
3D-XplorMath-J.jar
Surfaces of Constant Width
Alejandro Bia
Arte, Mates e Informática
8
Para ver en casa
VÍDEOS
SURFER
Red Blub (Vimeo)
YinYan (Vimeo)
IMAGINARY – CosmoCaixa Madrid (YouTube)
Surfer Video / IMAGINARY 2008 (YouTube)
The SURFER program is a unique realtime raytracer of algebraic surfaces with an intuitive user interface. It was developed
for the traveling Math Art Exhibition IMAGINARY 2008 by the Mathematisches Forschungsinstitut Oberwolfach with support buy
the Technical University Kaiserslautern. It became very popular – over 10 000 pictures and videos have been created with SURFER
by over 3000 people in just one year. MATH ART has become MASS ART!
Surfer (bis) (vimeo
Reise durch das Weltall (Vimeo)
Surfer – Imaginary (Vimeo)
Surfer – Imaginary (bis)
IMAGINARY in the Deutsches Museum, Munich (Vimeo)
heart/colibri morph (Vimeo)
Fractal Audio (Surfer)
Animation film made by Mariano Merchante as part of the lecture «Interactive Art and Science», ITBA, Buenos Aires 2011. It
was one of the first excercices of the lecture to play with Surfer and create an animation. The music is by Mindthings, the
song called Fractal.